On Semistable Principal Bundles over a Complex Projective Manifold

نویسنده

  • INDRANIL BISWAS
چکیده

Let G be a simple linear algebraic group defined over the field of complex numbers. Fix a proper parabolic subgroup P of G, and also fix a nontrivial antidominant character χ of P . We prove that a holomorphic principal G–bundle EG over a connected complex projective manifold M is semistable satisfying the condition that the second Chern class c2(ad(EG)) ∈ H (M, Q) vanishes if and only if the line bundle over EG/P defined by χ is numerically effective. Also, a principal G–bundle EG overM is semistable with c2(ad(EG)) = 0 if and only if for every pair of the form (Y , ψ), where ψ is a holomorphic map to M from a compact connected Riemann surface Y , and for every holomorphic reduction of structure group EP ⊂ ψ ∗EG to the subgroup P , the line bundle over Y associated to the principal P–bundle EP for χ is of nonnegative degree. Therefore, EG is semistable with c2(ad(EG)) = 0 if and only if for each pair (Y , ψ) of the above type the G–bundle ψ∗EG over Y is semistable. Similar results remain valid for principal bundles over M with a reductive linear algebraic group as the structure group. These generalize an earlier work of Y. Miyaoka, [Mi], where he gave a characterization of semistable vector bundles over a smooth projective curve. Using these characterizations one can also produce similar criteria for the semistability of parabolic principal bundles over a compact Riemann surface.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Principal Bundles on Projective Varieties and the Donaldson-uhlenbeck Compactification

Let H be a semisimple algebraic group. We prove the semistable reduction theorem for μ–semistable principal H–bundles over a smooth projective variety X defined over the field C. When X is a smooth projective surface and H is simple, we construct the algebro– geometric Donaldson–Uhlenbeck compactification of the moduli space of μ–semistable principal H–bundles with fixed characteristic classes ...

متن کامل

On Semistable Principal Bundles over a Complex Projective Manifold, Ii

Let (X, ω) be a compact connected Kähler manifold of complex dimension d and EG −→ X a holomorphic principal G–bundle, where G is a connected reductive linear algebraic group defined over C. Let Z(G) denote the center of G. We prove that the following three statements are equivalent: (1) There is a parabolic subgroup P ⊂ G and a holomorphic reduction of structure group EP ⊂ EG to P , such that ...

متن کامل

Moduli of principal bundles in positive characteristic

1. Let G be a semisimple algebraic group defined over an algebraically closed field k of characteristic p. In this article, we construct the moduli space of semistable principal G bundles on a smooth projective curve X over k, of genus g ≥ 2. When the characteristic is zero, for example the field of complex numbers, these moduli spaces were first constructed by A. Ramanathan (see [8], [9]). Lat...

متن کامل

Hermitian–Einstein connections on principal bundles over flat affine manifolds

Let M be a compact connected special flat affine manifold without boundary equipped with a Gauduchon metric g and a covariant constant volume form. Let G be either a connected reductive complex linear algebraic group or the real locus of a split real form of a complex reductive group. We prove that a flat principal G–bundle EG over M admits a Hermitian–Einstein structure if and only if EG is po...

متن کامل

1 Projective moduli space of semistable principal sheaves for a reductive group 1

This contribution to the homage to Silvio Greco is mainly an announcement of results to appear somewhere in full extent, explaining their development from our previous article [G-S1] on conic bundles. In [N-S] and [S1] Narasimhan and Seshadri defined stable bundles on a curve and provided by the techniques of Geometric Invariant Theory (GIT) developed by Mumford [Mu] a projective moduli space o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008